

III Semester B.C.A. Degree Examination, March/April 2022 (CBCS) (F+R) (Y2K14) COMPUTER SCIENCE

BCA 305 : Operating Systems

Time: 3 Hours

Max. Marks: 100

Instruction: Answer all Sections.

SECTION - A

I. Answer any ten questions.

 $(10 \times 2 = 20)$

- 1) Mention any two functions of an OS.
- 2) List any two differences between batch processing and multi-programming OS.
- 3) What is spooling?
- 4) Define compaction.
- 5) What is a semaphore?
- 6) What is aging?
- 7) What is safe state?
- 8) Define logical and physical address space.
- 9) What is page fault?
- Define thrashing.
- 11) What is disk formatting?
- 12) Define seek time.

SECTION - B

II. Answer any five questions.

 $(5 \times 5 = 25)$

- 13) Explain process state with a neat diagram.
 - 14) Explain Banker's Algorithm.
- 15) Write Peterson's algorithm for mutual exclusion problem.
- 16) Differentiate between contiguous and non-contiguous memory location.
- 17) Explain the term first-fit, best-fit and worst-fit.
- 18) Explain linked allocation method.
- 19) Explain optimal page replacement algorithm.
- 20) What is virus? Explain different types of viruses.

III Semester B.C.A. Deg 'O - NOITOBS On, March/April 2022

III. An	swer any thre	ee questions.		(3×15=4	5)		
21)	a) Explain co	ritical section probler	n.		7		
- 001	b) Explain re	esource allocation gra	aph.		8		
22)	a) Explain ty	pes of scheduler.			7		
	b) Explain d	ifferent methods of d	eadlock prev	vention.	8		
23)	a) Differentia	ate between paging a	and segmen	tation.	7		
100	b) Explain s	can and c-scan disk	scheduling.		8		
24)	a) Explain user authentication in details.						
	b) Write a ne	ote on various file as	sess method	ds.	8		
25)	a) Explain the dinning-philospher problem for synchronization. 5						
	b) Suppose a system uses priority scheduling where a small integer means						
	a high priority. A set of process with arrival time 0, in the order P1, P2,						
		he CPU burst time a					
	Process	CPU Burst time	Priority	6) What is aging ?			
	P1	6	2	7) What is safe state ?			
	P2	12	4	B) Define logical and physical			

Process	CPU Burst time	Priority
P1	6	2
P2	12	4
P3	1	5
P4	3	1
P5	4	3

Calculate the average waiting time and turnaround time using SJF, FCFS and priority scheduling.

SECTION - D

IV. Ar	nswer any one question.	11x10 in process state with a neat diagram.	=10)
26)	Write short notes on :		
	a) Time sharing systems.		5
	b) System call		5
27)	Write short notes on :		
	a) Process control block		8 5
	b) Swap-space managem	Explain optimal page replacement algorithtne	5