III Semester M.Sc. Degree Examination, March/April 2021
 (CBCS - Y2K17 Scheme)
 MATHEMATICS
 M 301 T: Differential Geometry

Time : 3 Hours
Max. Marks : 70

Instructions: Answer any 5 full questions from the following. All questions carry equal marks.

1. a) If $V=x U_{1}+y U_{3}$ and $W=2 x^{2} U_{2}-U_{3}$, then compute $W-x V$ and find its value at $p=(-1,0,2)$.
b) Let $V_{p}: V=(2,1,-3), P=(2,0,-1)$ and let $f=y^{2} z, g=e^{x} \operatorname{cosy}$. Then compute (i) $V_{p}[f]$, (ii) $V_{p}[g]$.
c) For vector fields V and W on E^{3}, if $V[f]=W[f]$, for all differentiable function f on E^{3}, then prove that $V=W$.
2. a) Explain reparametrization of a curve in E^{3}. Reparametrize the curve $\alpha(t)=\left(e^{t}, e^{-t}, \sqrt{2} t\right)$ using $h(s)=$ logs and verify the formula $\beta^{\prime}(s)=\frac{d h}{d s}(s) \alpha^{\prime}(h(s))$.
b) Derive the Frenet formulae for a unit speed curve.
3. a) Show that the curve $\alpha(t)=\left(2 t, t^{2}, \frac{1}{3} t^{3}\right)$ is a cylindrical helix.
b) Let $f=\left(z^{2}-1\right) d x-d y+x^{2} d z$ and $V_{p}=(1,2,-3), p=(0,-2,1)$. Then find $d f$ and evaluate $\mathrm{V}_{\mathrm{p}}[\mathrm{f}]$.
c) If $W=\sum W_{i} U_{i}$ and V is a vector field on E^{3}, then prove that $\nabla \mathrm{V} W=\sum_{i=1}^{3} V\left[w_{i}\right] U_{i}$. Use it to compute $\nabla_{v} W$ for $W=x^{2} U_{1}+y z U_{3}$.
4. a) Compute the derivative map $F_{p p}\left(V_{p}\right)$ for the mapping $F(x, y, z)=(x \cos y, x \sin y, z)$ and $V_{p}: V=(2,-1,3), p=(0,0,0)$.
b) Verify the structural equations for the cylindrical frame field.
c) Let F be an isometry of E^{3} such that $F(0)=0$. Then prove that F is an orthogonal transformation.
5. a) Which of the following is a patch ?
i) $X(u, v)=(u+v, u-v, u v)$
ii) $X(u, v)=\left(u^{2}, u v, v^{2}\right), u>0$.
b) Define a surface. Use the definition to show that unit sphere in E^{3} is a surface.
c) Show that a surface of revolution is a surface.
6. a) Show that a mapping $X: D \rightarrow E^{3}$ is regular if and only if the $u, v-$ partial derivatives $X_{u}(d), X_{v}(d)$ are linearly independent for all $d \in D$, where $D \subseteq E^{3}$.
b) Explain parametrization of a region and obtain parametrization of surface of revolution.
c) Define pull back function for P-form $(P=1,2)$. Show that (i) $F^{*}(\xi \wedge \eta)=F^{*} \xi \wedge F^{*} \eta$ (ii) $F^{*}(d \xi)=d\left(F^{*} \xi\right)$.
7. a) Show that the shape operator S_{p} is a linear operator and obtain shape operator of a cylinder.
b) Let α be a curve in $M \subseteq E^{3}$. If U is a unit normal of M restricted to the curve α, show that $\mathrm{S}\left(\alpha^{\prime}\right) . \alpha^{\prime}=\alpha^{\prime \prime} . \mathrm{U}$.
c) If p is a non-umbilic point $K_{1} \neq K_{2}$, then there are exactly two principal directions and these are orthogonal. Further, if e_{1} and e_{2} are principal vectors in these directions then $S\left(e_{1}\right)=k_{1} e_{1}, S\left(e_{2}\right)=k_{2} e_{2}$.
8. a) Show that for any patch X in M in $E^{3}, I=S\left(X_{u}\right) \cdot X_{u}=U \cdot X_{u u^{\prime}}, m=S\left(X_{u}\right) \cdot X_{v}=$ $U \cdot X_{u v}, n=S\left(X_{v}\right) \cdot X_{v}=U \cdot X_{v v}$. Compute the Gaussian and mean curvatures of $X(u, v)=(u \cos v, u \operatorname{sinv}, b v), b \neq 0$.
b) Let α be a regular curve in $M \subset E^{3}$, and let U be a unit normal vector field restricted to α. Then prove the followings.
i) the curve α is principal if and only if U^{\prime} and α^{\prime} are collinear at each point.
ii) the principal curvature of principal curve α in the direction of α^{\prime} is $\frac{\left(\alpha^{\prime \prime} \cdot U\right)}{\alpha^{\prime} \cdot \alpha^{\prime}}$.
c) Determine the geodesics of (i) sphere (ii) cylinder.
$(7+3+4)$
