PG - 161

III Semester M.Sc. Degree Examination, March/April 2021 (CBCS – Y2K17 Scheme) MATHEMATICS M 301 T : Differential Geometry

Time : 3 Hours

Max. Marks: 70

Instructions : Answer any 5 full questions from the following. All questions carry equal marks.

- 1. a) If $V = xU_1 + yU_3$ and $W = 2x^2U_2 U_3$, then compute W xV and find its value at p = (-1, 0, 2).
 - b) Let V_P : V = (2, 1, -3), P = (2, 0, -1) and let f = y²z, g = e^xcosy. Then compute (i) $V_P[f]$, (ii) $V_P[g]$.
 - c) For vector fields V and W on E³, if V[f] = W[f], for all differentiable function f on E³, then prove that V = W.
 (4+6+4)
- 2. a) Explain reparametrization of a curve in E³. Reparametrize the curve $\alpha(t) = (e^t, e^{-t}, \sqrt{2} t)$ using h(s) = logs and verify the formula $\beta'(s) = \frac{dh}{ds}(s) \alpha'(h(s))$.
 - b) Derive the Frenet formulae for a unit speed curve.
- 3. a) Show that the curve $\alpha(t) = \left(2t, t^2, \frac{1}{3}t^3\right)$ is a cylindrical helix.
 - b) Let $f = (z^2 1) dx dy + x^2 dz$ and $V_p = (1, 2, -3)$, p = (0, -2, 1). Then find df and evaluate $V_p[f]$.
 - c) If $W = \sum w_i U_i$ and V is a vector field on E³, then prove that $\nabla_v W = \sum_{i=1}^{3} V[w_i]U_i$. Use it to compute $\nabla_v W$ for $W = x^2 U_1 + yz U_3$. (5+4+5)
- 4. a) Compute the derivative map $F_{x_p}(V_p)$ for the mapping $F(x, y, z) = (x \cos y, x \sin y, z)$ and $V_p : V = (2, -1, 3), p = (0, 0, 0).$
 - b) Verify the structural equations for the cylindrical frame field.
 - c) Let F be an isometry of E^3 such that F(0) = 0. Then prove that F is an orthogonal transformation. (4+6+4)

P.T.O.

(7+7)

(4+5+5)

(7+3+4)

- 5. a) Which of the following is a patch?
 - i) X(u, v) = (u + v, u v, uv)
 - ii) $X(u, v) = (u^2, uv, v^2), u > 0.$
 - b) Define a surface. Use the definition to show that unit sphere in E³ is a surface.
 - c) Show that a surface of revolution is a surface.
- a) Show that a mapping X : D → E³ is regular if and only if the u, v partial derivatives X_µ(d), X_ν(d) are linearly independent for all d∈ D, where D⊆E³.
 - b) Explain parametrization of a region and obtain parametrization of surface of revolution.
 - c) Define pull back function for P-form (P = 1,2). Show that (i) $F^*(\xi \wedge \eta) = F^*\xi \wedge F^*\eta$ (ii) $F^*(d\xi) = d(F^*\xi)$. (5+5+4)
- 7. a) Show that the shape operator S_p is a linear operator and obtain shape operator of a cylinder.
 - b) Let α be a curve in M \subseteq E³. If U is a unit normal of M restricted to the curve α , show that S(α'). $\alpha' = \alpha''$.U.
 - c) If p is a non-umbilic point $K_1 \neq K_2$, then there are exactly two principal directions and these are orthogonal. Further, if e_1 and e_2 are principal vectors in these directions then $S(e_1) = k_1e_1$, $S(e_2) = k_2e_2$. (5+3+6)
- 8. a) Show that for any patch X in M in E^3 , $I = S(X_u) \cdot X_u = U \cdot X_{uu}$, $m = S(X_u) \cdot X_v = U \cdot X_{uv}$, $n = S(X_v) \cdot X_v = U \cdot X_{vv}$. Compute the Gaussian and mean curvatures of X(u, v) = (u cosv, u sinv, bv), b $\neq 0$.
 - b) Let α be a regular curve in M \subset E³, and let U be a unit normal vector field restricted to α . Then prove the followings.
 - i) the curve α is principal if and only if U' and α' are collinear at each point.
 - ii) the principal curvature of principal curve α in the direction of α' is $\frac{(\alpha''.U)}{\alpha'.\alpha'}$.
 - c) Determine the geodesics of (i) sphere (ii) cylinder.

PG - 161