III Semester M.Sc. Degree Examination, March/April 2021
 (CBCS - Y2K17)
 MATHEMATICS
 M302T : Fluid Mechanics

Time : 3 Hours
Max. Marks : 70
Instructions : 1) Answer any five full questions.
2) All questions carry equal marks.

1. a) The x_{i}^{\prime} system is obtained by rotating the x_{i} system about the x_{3} axis through an angle θ in the sense of the right handed screw, then find the transformation matrix. Further, if a point p has co-ordinates $(1,1,1)$ in the x_{i} system, then find its co-ordinates in the x_{i}^{\prime} system.
b) Define scalar invariants. Let \vec{a} and \vec{b} be vectors with components a_{i} and b_{i} respectively. Let A be a tensor with components $a_{i j}$, then show that $a_{i} b_{i}$ and a_{if} are scalar invariants.
2. a) Define symmetric and skew symmetric tensors. Show that for a skew tensor A, there exists a unique dual vector \vec{w} such that $A \vec{u}=\vec{w} \times \vec{u}$ for every vector \vec{u}.
b) State and prove divergence theorem for a tensor.
3. a) For the flow defined by the velocity field $\vec{v}=(1+a t) e_{1}+x_{1} e_{2}$ where ' a ' is constant, find the path lines and stream lines.
b) Establish Reynolds transport formula in its standard form.
c) Explain briefly the concept of stress components.
4. a) Obtain the conservation of energy in its standard form.
b) Establish the Euler's equation of motion in its most general form.
5. a) Derive Navier-Stokes equation for a compressible fluid in its standard form and write the same in the component form.
b) Obtain the exact solution of the Navier-Stokes equation for the couetle flow problem. Further, calculate the
i) Maximum velocity
ii) Average velocity and
iii) Shearing stress on the wall for the same.
6. a) For the steady and slow flow of an incompressible viscous fluid under zero body force, show that the pressure is a harmonic function.
b) Obtain the exact solution of the Navier-Stokes equation for the Hagen-Poiseuille flow problem. Further, calculate,
i) Maximum velocity
ii) Average velocity and
iii) Shearing stress for the same.
7. Establish the Stokes second problem and solve it. 14
8. a) State and prove Milne-Thomson circle theorem.
b) In a two-dimensional flow field $\psi=x y$. Show that the flow is irrotational. Find the velocity potential and verify that ϕ and ψ satisfy the Laplacian equation. Also, find stream line and potential line.
