

PG – 163

Third Semester M.Sc. Degree Examination, March/April 2021 (Y2K17 Scheme) (CBCS) MATHEMATICS M 303 T : Functional Analysis

Time : 3 Hours

Max. Marks: 70

5

4

5

6

8

4

10

8

Instructions : 1) Answer any five full questions.2) All questions carry equal marks.

- 1. a) State and prove :
 - i) Cauchy-Schwartz inequality.
 - ii) Minkowski inequality.
 - b) Show that the set Q of rational numbers is not a Banach space.
 - c) Let M be a closed subspace of a normed linear space N. Prove that N/M is a normed linear space. Further show that N/M is complete when N is complete.
- 2. a) Let (B, || · ||) be a Banach space such that B = M ⊕ N, where M and N are linear subspaces of B. Then show that B₁ = (B, || · ||₁) is a Banach space if

M and N are closed in B, where $\|z\|_1 = \|x + y\|_1 = \|x\| + \|y\|, \forall z \in B$.

- b) Show that the set B (N, N') of all continuous linear transformations from a normed linear space N into N' is itself a normed linear space. Further show that B(N, N') is complete, when N' is complete.
- 3. a) If N is a normed linear space and $x_0 \in N$ with $x_0 \neq 0$, then show that there exists a functional $f_0 \in N^*$ such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$.
 - b) State and prove open mapping theorem.
- 4. a) State and prove Banach-Steinhaus theorem.
 - b) Show that the mapping $T \rightarrow T^*$ is an isometric isomorphism of B(N) into B(N^{*}) which reverses the product and preserves the identity transformation, where T is an operator on N and T^{*} is an operator on N^{*}.
 - c) Show that $\overline{\alpha A} = \alpha \overline{A}$, where $A \subseteq N$, where N is Banach space and α be scalar.

P.T.O.

2

PG	-		
5.	a)	In a Hilbert space H, prove that parallelogram law and polarization identity holds.	6
	b)	Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.	8
6.	a)	If S is a non-empty subset of a Hilbert space H, then prove that S^{\perp} is a closed linear subspace of H.	5
	b)	If M is a proper closed linear subspace of a Hilbert space H, then prove that there exists a non-zero vector z_0 in H such that $z_0 \perp M$.	5
	c)	If M and N are closed linear subspaces of a Hilbert space H such that $M \perp N$, then prove that the linear subspace M + N is also closed.	4
7.	a)	Show that the set of all self adjoint operators in B(H), where H is a Hilbert space forms a closed linear subspace of B(H).	6
	b)	Show that an operator T on a Hilbert space H is self adjoint if and only if $\langle Tx,x\rangle$ is real for all x in H.	4
	c)	Let H be an inner product space and $S = \{e_1, e_2,, e_n\}$ is an orthonormal	
		subset of H. If $x \in$ Span (S), then show that $x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$.	4
8.	a)	If T_1 and T_2 are normal operators on a Hilbert space H such that either commutes with the adjoint of the other, then prove that product and sum of T_1 and T_2 are also normal operators.	5
8	b)	Define an unitary operator. Show that an unitary operator preserves the inner product and the norm.	6
	c)	Show that if a normal operator T has eigen value $\lambda,$ then its adjoint T* has eigen value $\overline{\lambda}$.	3

b). Show that the mapping $1 \to 1$ is on isometric formorphism of B(4) light

c) Show that when where a give where while Banach spand and