

III Semester M.Sc. Degree Examination, March/April 2021 (CBCS - Y2K17 Scheme) **MATHEMATICS** M304T: Linear Algebra

Time: 3 Hours

Max. Marks: 70

Instructions: i) Answer any five full questions.

ii) All questions carry equal marks.

- 1. a) If A is an algebra with unit element over a field F, then show that A is isomorphic to a sub algebra of A(V) for some vector space V over F.
 - b) Define a minimal polynomial of linear transformation. If V is a finite dimensional vector space over a field F, then show that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not zero.
 - c) Give an example to show that $ST \neq TS$ for $S, T \in A(V)$.

(5+6+3)

- 2. a) Define a range and rank of the linear transformation. If V is a finite dimensional vector space over a field F and S, $T \in A(V)$, then prove that $r(ST) \le \min \{r(T), r(S)\}.$
 - b) Define a characteristic roots and vectors of a linear transformation. Let $\lambda \in F$ be a characteristic root of $T \in A(V)$. Prove for any polynomial $q(x) \in F[x]$, $q(\lambda)$ is a characteristic root of q(T).
 - c) Let V be the set of all polynomials of degree (n-1) or less over F. On V_{ams} let D be the transformation given by

$$(\beta_0 + \beta_1 x + \beta_2 x^2 + \ldots + \beta_{n-1} x^{n-1}) \ D = \beta_1 + 2\beta_2 x + \ldots \ldots + (n-1) \ \beta_{n-1} x^{n-2},$$

where D is the differential operator, $D = \frac{d}{dx}$. Then find the matrix of D in the following basis.

$$i) \ \{1,\, x,\, x^2,\, x^3,\,,\, x^{n-1}\}$$

ii)
$$\{1, 1+x, 1+x^2, ..., 1+x^{n-1}\}.$$

(5+5+4)

- 3. a) Show that the product of two linear transformations is a linear transformation.
 - b) Let $T: P_2(R) \to P_3(R)$ be the linear transformation defined by $T(a_0 + a_1 x + a_2 x^2) = (2a_0 + 2a_2) + (a_0 + a_1 + 3a_2) x + (a_1 + 2a_2) x^2 + (a_0 + a_2) x^3.$ Then, find the matrix A of T relative to the standard basis.
 - c) Define a linear functional and dual basis with examples. Let V be a vector space over a field F. Then prove that the double dual V** is isomorphic to V. (3+5+6)
- 4. a) If $T \in A(V)$ has all its characteristic roots in F, then prove that there exists a basis of V in which the matrix of T is triangular.
 - b) Define a nilpotent linear transformation. Show that two nilpotent linear transformations are similar if and only if they have the same invariants. (6+8)
- 5. a) Define a basic Jordan block and explain it with an example. Let $T \in A(V)$ have all its distinct characteristic roots $\lambda_1, \, \lambda_2, \,, \, \lambda_k$ in F. Then show that a basis of V can be found in which the matrix T is of the form

blocks belonging to λ_i .

b) Let $T \in A(V)$ has a minimal polynomial $p(x) = \gamma_0 + \gamma_1 x + \dots + \gamma_{r-1} x^{r-1} + x^r$ over F. Suppose that V is a module in a cyclic module relative to T, then prove that there exists a basis of V over F. Such that the matrix of T in this basis is of the form

$$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -\gamma_0 & -\gamma_1 & -\gamma_2 & \cdots & -\gamma_{r-1} \end{pmatrix}$$

- 6. a) Define an inner product space. State and prove the Cauchy-Schwartz inequality in an inner product space.
 - b) Let $w_1 = (1, 0, 1, 0)$, $w_2 = (1, 1, 1, 1)$ and $w_3 = (0, 1, 2, 1)$ in R⁴. If $\{w_1, w_2, w_3\}$ is linearly independent. Use the Gram-Schmidt orthogonalization process to compute the orthogonal vectors v_1 , v_2 and v_3 and then normalize these vectors to obtain an orthonormal set.
 - c) If $\{v_1, v_2,, v_n\}$ is an orthonormal set in an inner product space V and $v \in V$. Then prove that $\sum_{i=1}^n \left| \langle v, v_i \rangle \right|^2 \le \left\| v \right\|^2$. Further, show that equality holds if and only if v is in the subspace spanned by $\{v_1, v_2,, v_n\}$. (4+5+5)
- 7. a) Define the following with suitable examples:
 - i) Positive definite quadratic form
 - ii) Positive semi definite quadratic form
 - iii) Negative definite quadratic form
 - iv) Negative semi definite quadratic form Is Q (x) = $-3x^2 + 4x_1^2 11x_1x_4 + 5x_2x_4 + 18x_1x_2 + 16x_4^2$ positive definite? Justify your answer.
 - b) Let $A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix}$. Find the maximum value of quadratic form subject to

 $x^Tx = 1$ and a unit vector at which this value is attained.

c) Explain the singular value decomposition.

(6+4+4)

- 8. a) Define
 - i) Bilinear form
 - ii) Symmetric bilinear form with an example.
 - b) State and prove the Sylvester's law of inertia for real quadratic form.
 - c) Find the rank and signature of the real quadratic form $x_1^2 4x_1x_2 + x_2^2$. (4+8+2)