III Semester M.Sc. Degree Examination, March/April 2021
 (CBCS - Y2K17 Scheme)
 MATHEMATICS
 M304T : Linear Algebra

Time : 3 Hours
Max. Marks : 70

Instructions : i) Answer any five full questions.
ii) All questions carry equal marks.

1. a) If A is an algebra with unit element over a field F, then show that A is isomorphic to a sub algebra of $A(V)$ for some vector space V over F.
b) Define a minimal polynomial of linear transformation.

If V is a finite dimensional vector space over a field F, then show that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not zero.
c) Give an example to show that $S T \neq T S$ for $S, T \in A(V)$.
2. a) Define a range and rank of the linear transformation.

If V is a finite dimensional vector space over a field F and $S, T \in A(V)$, then prove that $r(S T) \leq \min \{r(T), r(S)\}$.
b) Define a characteristic roots and vectors of a linear transformation.

Let $\lambda \in F$ be a characteristic root of $T \in A(V)$. Prove for any polynomial $q(x) \in F[x], q(\lambda)$ is a characteristic root of $q(T)$.
c) Let V be the set of all polynomials of degree $(n-1)$ or less over F. On $V_{q m s}$ let D be the transformation given by
$\left(\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\ldots \ldots+\beta_{n-1} x^{n-1}\right) D=\beta_{1}+2 \beta_{2} x+\ldots \ldots+(n-1) \beta_{n-1} x^{n-2}$,
where D is the differential operator, $D=\frac{d}{d x}$. Then find the matrix of D in the following basis.
i) $\left\{1, x, x^{2}, x^{3}, \ldots, x^{n-1}\right\}$
ii) $\left\{1,1+x, 1+x^{2}, \ldots, 1+x^{n-1}\right\}$.
3. a) Show that the product of two linear transformations is a linear transformation.
b) Let $T: P_{2}(R) \rightarrow P_{3}(R)$ be the linear transformation defined by
$T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=\left(2 a_{0}+2 a_{2}\right)+\left(a_{0}+a_{1}+3 a_{2}\right) x+\left(a_{1}+2 a_{2}\right) x^{2}+\left(a_{0}+a_{2}\right) x^{3}$. Then, find the matrix A of T relative to the standard basis.
c) Define a linear functional and dual basis with examples. Let V be a vector space over a field F. Then prove that the double dual $\mathrm{V}^{* *}$ is
isomorphic to V .
4. a) If $T \in A(V)$ has all its characteristic roots in F, then prove that there exists a basis of V in which the matrix of T is triangular.
b) Define a nilpotent linear transformation. Show that two nilpotent linear transformations are similar if and only if they have the same invariants. (6+8)
5. a) Define a basic Jordan block and explain it with an example.

Let $T \in A(V)$ have all its distinct characteristic roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ in F. Then show that a basis of V can be found in which the matrix T is of the form

blocks belonging to λ_{i}.
b) Let $T \in A(V)$ has a minimal polynomial $p(x)=\gamma_{0}+\gamma_{1} x+\ldots .+\gamma_{r-1} x^{r-1}+x^{r}$ prove that there exists a basis of V over F. Such that the matrix of T in this
basis is of the form

$$
\left(\begin{array}{cccccc}
0 & 1 & 0 & . & . & 0 \\
0 & 0 & 1 & . & . & . \\
. & . & . & . & . & 0 \\
. & . & . & . & . & . \\
0 & 0 & 0 & . & . & . \\
-\gamma_{0} & -\gamma_{1} & -\gamma_{2} & . & . & . \\
-\gamma_{r-1}
\end{array}\right)
$$

6. a) Define an inner product space. State and prove the Cauchy-Schwartz inequality in an inner product space.
b) Let $w_{1}=(1,0,1,0), w_{2}=(1,1,1,1)$ and $w_{3}=(0,1,2,1)$ in R^{4}. If $\left\{w_{1}, w_{2}, w_{3}\right\}$ is linearly independent. Use the Gram-Schmidt orthogonalization process to compute the orthogonal vectors $\mathrm{v}_{1}, \mathrm{v}_{2}$ and v_{3} and then normalize these vectors to obtain an orthonormal set.
c) If $\left\{v_{1}, v_{2}, \ldots . . v_{n}\right)$ is an orthonormal set in an inner product space V and $v \in V$. Then prove that $\sum_{i=1}^{n}\left|\left\langle v, v_{i}\right\rangle\right|^{2} \leq\|v\|^{2}$.
Further, show that equality holds if and only if v is in the subspace spanned by $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots \mathrm{v}_{\mathrm{n}}\right)$.
7. a) Define the following with suitable examples:
i) Positive definite quadratic form
ii) Positive semi definite quadratic form
iii) Negative definite quadratic form
iv) Negative semi definite quadratic form Is $Q(x)=-3 x^{2}+4 x^{2}{ }_{1}-11 x_{1} x_{4}+5 x_{2} x_{4}+18 x_{1} x_{2}+16 x_{4}^{2}$ positive definite? Justify your answer.
b) Let $A=\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4\end{array}\right]$. Find the maximum value of quadratic form subject to $x^{\top} x=1$ and a unit vector at which this value is attained.
c) Explain the singular value decomposition.
8. a) Define
i) Bilinear form
ii) Symmetric bilinear form with an example.
b) State and prove the Sylvester's law of inertia for real quadratic form.
c) Find the rank and signature of the real quadratic form $x^{2}{ }_{1}-4 x_{1} x_{2}+x^{2}$.
