

Third Semester M.Sc. Degree Examination, April/May 2022 (CBCS – Y2K17/Y2K14 Scheme) MATHEMATICS

M301T: Differential Geometry

. Time: 3 Hours

Max. Marks: 70

Instructions: 1) Answer any five full questions.2) All questions carry equal marks.

- 1. a) Define directional derivative of a function. Compute $V_p[f]$ for $f = x^2yz$, v = (1, 0, -3), p = (1, 1, 0).
 - b) If h(S) = log S on J, S > 0. Reparametrise $\alpha(t) = (e^t, e^{-t}, \sqrt{2}t)$ using h. Verify the result $\beta'(S) = \alpha'(h(S)) \frac{dh}{ds}(S)$.
 - c) Let α be a Curve in E³. Then prove that $\alpha'(t)[f] = \frac{d}{dt}(f \circ \alpha)(t)$. (4+7+3)
- 2. a) In each case compute differential df of f and find its directional derivative V_p [f] for V_p .
 - i) $f = xy^2 yz^2$
 - ii) $f = xe^{yz}$.
 - b) If ϕ and ψ are 1- forms on E³ then prove that d $(\phi \land \psi) = d\phi \land \psi \phi \land d\psi$.
- c) Let $F : E^3 \to E^3$ be defined by $F (x, y, z) = (x \cos y, x \sin y, z)$. Compute FV_p for $V_p : V = (2, -1, 3), p = (0, 0, 1)$. (4+5+5)
- 3. a) Compute the Frenet apparatus T, N, B, J, K for the curve $\beta(s) = \left(a\cos\frac{s}{c}, a\sin\frac{s}{c}, b\frac{s}{c}\right)$, where $C = \sqrt{a^2 + b^2}$.
 - b) Show that

i)
$$\nabla_{aV_p + bW_p} Y = a\nabla_{V_p} Y + b\nabla_{W_p} Y$$
.

ii)
$$V_p[Y.Z] = \nabla_{V_p} Y.Z(p) + Y(p) \cdot \nabla_{V_p} Z.$$

for any tangent vectors V_p , W_p to E^3 at p, vector fields Y, Z on E^3 any real numbers a and b.

c) Compute ∇_{V_p} W for W = x^2 U₁ + yzU₃ any V_p : V = (-1, 0, 2), P = (2, 1, 3). (5+6+3)

- 4. a) Derive Cylindrical frame field and find its connection forms.
 - b) If F is an isometry of E³, then prove that there exist a unique translation T and a unique orthogonal transformation C such that F = TC. (6+8)
- 5. a) Let f be a real valued differentiable function on a non-empty open set D of E². Then show that the function x : D → E³ satisfying x (u, v) = (u, v, f(u, v)) is a proper patch in E³.
 - b) Let g be a differentiable real valued function on E³ and C a number. Show that the subset M : g (x, y, z) = C of E³ is a surface. If the differential dg is not zero at any point of M. (6+8)
- 6. a) Let p be a point of a surface M in E^3 and let X be a patch in M such that $X(u_0, v_0) = p$. Show that a tangent vector V_p to E^3 at p is tangent to M if and only if V_p can be written as a linear combination of $X_u(u_0, v_0)$ and $X_v(u_0, v_0)$.
 - b) Obtain the parametrisation of cylinder.
 - c) If ξ and η are 1-forms on N and F : M \rightarrow N is a mapping then show that

i)
$$F^*(\xi + \eta) = F^*\xi + F^*\eta$$
.

ii)
$$F^*(\xi \wedge \eta) = F^*\xi \wedge F^*\eta$$
.

(5+3+6)

- 7. a) Obtain the shape operator of a Sphere of radius r.
 - b) Define principal curvatures. Show that, if p is an umbilic point of a surface M in E³ then the shape operator S at p in just a scalar multiplication by K = K₁ = K₂.
 - c) With usual notations prove $K = K_1 K_2$, $H = \frac{1}{2} (K_1 + K_2)$. (4+7+3)

ComputerV, With W = x² U, + yzU, any V : V = (-1, 0, 2), P = (2, 1, 3);

- 8. a) If X is a patch in a Surface M in E³ then show that the Gaussion curvature K and mean curvature H of M are given by $K = \frac{In m^2}{EG F^2}$, $H = \frac{GI + En 2Fm}{2(EG F^2)}$.
 - b) Compute K, H and hence K_1 , K_2 for X (u, v) = (ucosv, usinv, bv), b \neq 0.
 - c) Determine the geodesics of a plane.

(5+7+2)