Third Semester M.Sc. Degree Examination, April/May 2022 (CBCS - Y2K17/Y2K14 Scheme) MATHEMATICS
 M301T : Differential Geometry

- Time : 3 Hours

Max. Marks : 70
Instructions : 1) Answer any five full questions.
2) All questions carry equal marks.

1. a) Define directional derivative of a function. Compute $V_{p}[f]$ for $f=x^{2} y z$, $v=(1,0,-3), p=(1,1,0)$.
b) If $\mathrm{h}(\mathrm{S})=\log \mathrm{S}$ on $\mathrm{J}, \mathrm{S}>0$. Reparametrise $\alpha(\mathrm{t})=\left(\mathrm{e}^{\mathrm{t}}, \mathrm{e}^{-\mathrm{t}}, \sqrt{2 \mathrm{t}}\right)$ using h . Verify the result $\beta^{\prime}(\mathrm{S})=\alpha^{\prime}(\mathrm{h}(\mathrm{S})) \frac{\mathrm{dh}}{\mathrm{ds}}(\mathrm{S})$.
c) Let α be a Curve in E^{3}. Then prove that $\alpha^{\prime}(t)[f]=\frac{d}{d t}(f \circ \alpha)(t)$.
2. a) In each case compute differential df of f and find its directional derivative $V_{p}[f]$ for V_{p}.
i) $f=x y^{2}-y z^{2}$
ii) $f=x e^{y z}$.
b) If ϕ and ψ are 1 - forms on E^{3} then prove that $d(\phi \wedge \psi)=\mathrm{d} \phi \wedge \psi-\phi \wedge \mathrm{d} \psi$.
c) Let $\mathrm{F}: \mathrm{E}^{3} \rightarrow \mathrm{E}^{3}$ be defined by $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x} \cos \mathrm{y}, \mathrm{xsin} \mathrm{y}, \mathrm{z})$. Compute $\mathrm{FV} \mathrm{V}_{\mathrm{p}}$ for $V_{p}: V=(2,-1,3), p=(0,0,1)$.
3. a) Compute the Frenet apparatus $\mathrm{T}, \mathrm{N}, \mathrm{B}, \mathrm{J}, \mathrm{K}$ for the curve $\beta(s)=(a \cos s / c, a \sin s / c, b s / c)$, where $C=\sqrt{a^{2}+b^{2}}$.
b) Show that
i) $\nabla_{a v_{p}+b w_{p}} Y=a \nabla_{v_{p}} Y+b \nabla_{w_{p}} Y$.
ii) $V_{p}[Y . Z]=\nabla_{V_{p}} Y . Z(p)+Y(p) \cdot \nabla_{v_{p}} Z$.
for any tangent vectors V_{p}, W_{p} to E^{3} at p, vector fields Y, Z on E^{3} any real numbers a and b .
c) Compute $\nabla_{\mathrm{v}_{\mathrm{p}}} \mathrm{W}$ for $\mathrm{W}=\mathrm{x}^{2} \mathrm{U}_{1}+\mathrm{yz} \mathrm{U}_{3}$ any $\mathrm{V}_{\mathrm{p}}: \mathrm{V}=(-1,0,2), \mathrm{P}=(2,1,3)$.
4. a) Derive Cylindrical frame field and find its connection forms.
b) If F is an isometry of E^{3}, then prove that there exist a unique translation T and a unique orthogonal transformation C such that $F=T C$.
5. a) Let f be a real valued differentiable function on a non-empty open set D of E^{2}. Then show that the function $x: D \rightarrow E^{3}$ satisfying $x(u, v)=(u, v, f(u, v))$ is a proper patch in E^{3}.
b) Let g be a differentiable real valued function on E^{3} and C a number. Show that the subset $\mathrm{M}: \mathrm{g}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{C}$ of E^{3} is a surface. If the differential dg is not zero at any point of M .
6. a) Let p be a point of a surface M in E^{3} and let X be a patch in M such that $X\left(u_{0}, v_{0}\right)=p$. Show that a tangent vector V_{p} to E^{3} at p is tangent to M if and only if V_{p} can be written as a linear combination of $X_{u}\left(u_{0}, v_{0}\right)$ and $X_{v}\left(u_{0}, v_{0}\right)$.
b) Obtain the parametrisation of cylinder.
c) If ξ and η are 1 -forms on N and $\mathrm{F}: \mathrm{M} \rightarrow \mathrm{N}$ is a mapping then show that
i) $F^{*}(\xi+\eta)=F^{*} \xi+F^{*} \eta$.
ii) $F^{*}(\xi \wedge \eta)=F^{*} \xi \wedge F^{*} \eta$.
7. a) Obtain the shape operator of a Sphere of radius r.
b) Define principal curvatures. Show that, if p is an umbilic point of a surface M in E^{3} then the shape operator S at p in just a scalar multiplication by $\mathrm{K}=\mathrm{K}_{1}=\mathrm{K}_{2}$.
c) With usual notations prove $\mathrm{K}=\mathrm{K}_{1} \mathrm{~K}_{2}, \mathrm{H}=1 / 2\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)$.
8. a) If X is a patch in a Surface M in E^{3} then show that the Gaussion curvature K and mean curvature H of M are given by $K=\frac{I n-m^{2}}{E G-F^{2}}, H=\frac{G I+E n-2 F m}{2\left(E G-F^{2}\right)}$.
b) Compute K, H and hence $\mathrm{K}_{1}, \mathrm{~K}_{2}$ for $\mathrm{X}(\mathrm{u}, \mathrm{v})=$ (ucosv, usinv, bv$), \mathrm{b} \neq 0$.
c) Determine the geodesics of a plane.
