

PG – 142

III Semester M.Sc. Degree Examination, April/May 2022 (Y2K17/Y2K14 – CBCS) MATHEMATICS M 303 T : Functional Analysis

Time : 3 Hours

Max. Marks: 70

Instructions : 1) Answer any five full questions. 2) All questions carry equal marks.

- 1. a) Define a normed linear space with usual notations, show that $||x + y||_p \le ||x||_p + ||y||_p$ in Fⁿ, where $1 \le p < \infty$.
 - b) Show that the set of rational numbers φ is not a Banach space. (10+4)
- 2. a) Let M be a closed linear sub space of a normed linear space N. Show that the quotient space $\frac{N}{M}$ is also normed linear space with the norm of each coset x + M defined as $||x+M|| = \inf\{||x+m|| : m \in M\}$. Further if N is a Banach

space, then prove that $\frac{N}{M}$ is also a Banach space.

- b) If N and N' are normed linear spaces over the same field and T : N \rightarrow N' is a linear transformation, then prove that the following are equivalent.
 - i) T is continuous
 - ii) T is continuous at the origin
 - iii) T is bounded
 - iv) T(s) is bounded in N', where $s = \{x \in N : ||x|| \le 1\}$ is a closed unit ball in N. (7+7)
- 3. a) State and prove Hahn Banach-theorem for both real and complex cases.
 - b) If N is a normed linear space and $x_0 \in N$ with $x_0 \neq 0$, then show that there exist a functional $f_0 \in N^*$ such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$. (10+4)
- 4. a) State and prove open mapping theorem.
 - b) Show that the mapping $T \rightarrow T^*$ is an isometric isomorphism of B(N) into B(N*) which reverses the product and preserves the identity transformation, where T is an operator on N and T* an operator on N*.
 - c) Let N be a normed linear space and X be a non empty subset of N. If f(x) is bounded for each $f \in N^*$, then show that x is bounded. (7+4+3)

P.T.O.

PG - 142

- 5. a) Define Hilbert space. show that the inner product and the norm in H are continuous.
 - b) Prove that in a Hilbert space H, the following hold
 - i) |<x, y>| ≤ ||x|| ||y||. VIENA IEROLOODE : TEOS M
 - ii) $||x + y|| \le ||x|| + ||y||, \forall x, y \in H.$
 - c) Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm. (4+4+6)
- a) If S is a non empty subset of Hilbert space H, then prove that S[⊥] is a closed linear subspace of H.
 - b) Let H be a Hilbert space and {e_i} be an orthonormal set in H. Then prove that the following are equivalent :
 - i) $\{e_i\}_{i=1}^n$ is complete.

ii)
$$x \perp e_i \forall i \Rightarrow x = 0$$

iii) $x \in H \implies x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$

iv)
$$x \in H \implies ||x||^2 = \sum_{i=1}^n |\langle x, e_i \rangle|^2$$

7. a) Define the adjoint of an operator T on H and prove the following :

- i) $(T_1 + T_2)^* = T_1^* + T_2^*$
- ii) $(\alpha T)^* = \overline{\alpha} T^*$

iii)
$$||T^*|| = ||T||$$

- iv) T is non singular \Rightarrow T* is non singular.
- b) Show that an operator T on a Hilbert space H is self-adjoint if and only if (T_x, x) is real for all x in H.
- c) Show that T* is linear and continuous, where T* is adjoint of T. (6+4+4)
- 8. a) If T_1 and T_2 are normal operators on a Hilbert space H such that either commutes with the adjoint of the other, then prove that product and sum of T_1 and T_2 are also normal operators.
 - b) If P₁, P₂,...,P_n are projections on closed linear subspaces M₁, M₂,..., M_n of a Hilbert space H, then prove that P₁ + P₂ + ... + P_n is a projection iff P_i's are pair wise orthogonal.
 - c) Show that if a normal operator T has eigenvalue λ , then its adjoint T* has eigenvalue $\overline{\lambda}$. (4+7+3)

(6+8) 2000, then prove that we have a second