III Semester M.Sc. Degree Examination, April/May 2022 (CBCS - Y2K17/Y2K14 Scheme)

 MATHEMATICS

 MATHEMATICS
 M304T : Linear Algebra

Time : 3 Hours

Max. Marks : 70

Instructions : i) Answer any five full questions.
 ii) All questions carry equal marks.

1. a) If V is an n-dimensional vector space over F, then prove that for a given $T \in A(V)$, there exists a non trivial polynomial $q(x) \in F(x)$ of degree atmost n^{2} such that $q(T)=0$.
b) Define minimal polynomial of a linear transformation. If V is a finite dimensional vector space over F and $T \in A_{F}(V)$ is invertible, then prove that T^{-1} has a polynomial expression is T over F.
c) If V is a finite dimensional vector space over F, then prove that $T \in A_{F}(V)$ is regular if and only if T maps V onto itself.
2. a) Define the rank of $T \in A(V)$. If V is a finite dimensional vector space over F, then for $S, T \in A(V)$, prove that :
i) $r(S T) \leq r(T)$
ii) $r(T S) \leq r(S)$
iii) $r(T S)=r(S T)=r(T)$ for S is regular in $A(V)$.
b) If $\lambda \in F$ is a characteristic value of $T \in A_{F}(V)$, then for any $q(x) \in F(x)$, prove that $q(\lambda)$ is a characteristic root of $q(T)$.
c) If V is an n-dimensional vector space over F and if $T \in A_{F}(V)$ has the matrix $m_{1}(T)$ in the basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the matrix $m_{2}(T)$ in the basis $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ of v_{1}, then prove that there exists a matrix C in F_{n} such that $m_{2}(T)=C m_{1}(T) C^{-1}$.
3. a) Define the composition of linear transformation. Show that the product of two linear transformations is a linear transformation.
b) Let $T: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ be the linear transformation defined by
$T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=\left(2 a_{0}+2 a_{2}\right)+\left(a_{0}+a_{1}+3 a_{2}\right) x+\left(a_{1}+2 a_{2}\right) x^{2}+\left(a_{0}+a_{2}\right) x^{3}$ then find the matrix A of T relative to the standard basis.
c) Suppose that V is a finite dimensional vector space over a field F with the ordered basis $B=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Let $B^{*}=\left\{f_{1}, f_{2}, \ldots f_{n}\right\}$ where $f_{i}(1 \leq i \leq n)$ is the $\mathrm{i}^{\text {th }}$ co-ordinate function with respect to B. Then show that B^{*} is an ordered basis of V^{*} and for $f \in V^{*}$ we have $f=\sum_{i=1}^{n} f\left(x_{i}\right) f_{i}$.
4. a) If $W \subset V$ is an invariant subspace under T, then prove that T induces a linear transformation \bar{T} on \bar{V}. If T satisfies a polynomial $q(x) \in F[x]$, then prove that \bar{T} also satisfies $q(x)$. Further if $p_{1}(x)$ is the minimal polynomial for \bar{T} over F and $p(x)$ is that for T, then prove that $p_{1}(x)$ divides $p(x)$.
b) Define triangular canonical form. If $T \in A_{F}(V)$ has all its characteristic roots in F, then show that there exists a basis of V in which the matrix of T is triangular.
5. a) Define a nilpotent linear transformation. Show that two nilpotent transformation are similar if and only if they have the same invariants.
b) If $T \in A_{F}(V)$ has minimal polynomial $p(x)=q_{1}(x)^{1 /} q_{2}(x)^{\frac{1}{2}} \ldots q_{k}(x)^{k^{k}}$ over F, where $q_{1}(x), q_{2}(x), \ldots q_{k}(x)$ are irreducible distinct polynomials in $F[x]$, then prove that there exists a basis of V in which the matrix of T is of the form

$$
\begin{align*}
& {\left[\begin{array}{cccc}
R_{1} & 0 & \ldots & 0 \\
0 & R_{2} & \ldots & 0 \\
\vdots & & & \\
0 & 0 & \ldots & R_{n}
\end{array}\right] \text { where each } R_{i}=\left[\begin{array}{lll}
C\left(q_{1}(x)^{o_{i}}\right) & & \\
& \ddots & \\
& & C\left(q_{1}(x)^{\left.{ }^{{ }_{i n}}\right)}\right.
\end{array}\right]} \\
& \text { where } e_{i_{1}} \geq e_{i_{2}} \geq \ldots \geq e_{i_{n}} . \tag{7+7}
\end{align*}
$$

6. a) Let u and v be two vectors in an inner product space v such that $\|u+v\|=\|u\|+\|v\|$. Prove that u and v are linear dependent vectors. Give an example to show that the converse of this statement is not true.
b) Define an orthogonal compliment. Let $u=(-1,4,-3)$ be a vector in the inner product space with standard inner product. Find a basis of the subspace u^{+}of \mathbb{R}^{3}.
c) State and prove Bessel's inequality.
7. a) Define a quadratic form. Explain the classification of quadratic form with suitable example.
b) Is $Q(x)=3 x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}+4 x_{1} x_{2}+4 x_{2} x_{3}$ positive definite ? Explain.
c) Decompose the following matrix into its singular value decomposition.

$$
A=\left[\begin{array}{ccc}
4 & 11 & 14 \tag{5+4+5}\\
8 & 7 & -2
\end{array}\right]
$$

8. a) Define :
i) Bilinear form.
ii) Symmetric bilinear form with an example.

Let \mathbb{B} be a bilinear form on a finite dimensional vector space V and let β be an ordered basis of V. Then show that \mathbb{B} is symmetric if and only if $\Psi_{\beta}(\mathbb{B})$ is symmetric.
b) Show that two real symmetric matrices are congruent if and only if they have same rank and signature.
c) Find the rank and signature of the real quadratic form $x_{1}^{2}-4 x_{1} x_{2}+x_{2}^{2}$.
$(6+6+2)$

