

PG - 144

III Semester M.Sc. Degree Examination, April/May 2022 (Y2K17/Y2K14) (CBCS) MATHEMATICS M305T : Numerical Analysis – II

Time : 3 Hours Max. Marks : 70 Instructions : i) Answer any five full questions.

ii) All questions carry equal marks.

- 1. a) Solve by three iterations of the Picard's method for the initial value problem $\frac{d^2y}{dx^2} + xy = 0; y(0) = 1, \frac{dy(0)}{dx} = 0 \text{ and estimate } y(0.05).$
- b) Solve $\frac{dy}{dx} = y + e^x$; y(0) = 0, find y(0.2) taking h = 0.2 by modified Euler's method. (8+6)
- 2. a) By making use of the classical, explicit Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = 3y + 2z ; y (0) = 1$ $\frac{dz}{dx} = 3y - 4z ; z(0) = 0 \text{ and compute } y(0.05) \text{ and } z(0.05).$
 - b) Discuss the stability of Runge-Kutta method of order two and four. (7+7)
- 3. a) Derive the three-step Adams-Bashforth method for $\frac{dy}{dx} = f(x, y)$; $y(x_0) = y_0$. b) Solve $\frac{d^2y}{dx^2} = x + y$ with y(0) = 0, y(1) = 1 by finite difference method taking $\Delta x = 0.25$ one iteration by Gauss Seidel method. (7+7)
- 4. Describe the shooting method for the solution of higher order differential equations. Hence, solve $\frac{d^2y}{dx^2} = x\frac{dy}{dx} + y$ subject to y(0) = 0; y(0.2) = 1.
- 5. a) Solve the Poisson's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = x^2 + y^2$; $0 \le x \le 1, 0 \le y \le 1$ with u = 0 on the boundary of unit square, choosing $\Delta x = \Delta y = \frac{1}{3}$.
 - b) Discuss the stability of the Schmidt method applied to one dimensional heat equation. (8+6)

P.T.O.

14

PG - 144

Nicolson Implicit method.

- 6. Solve the IBVP $\frac{\partial u}{\partial t} + \frac{\partial^2 u}{\partial x^2}$; $0 \le x \le 1, t \ge 1$ subject to u(x, 0) = x(1 x); $0 \le x \le 1$ u(0, 1) = 0u(1, t) = 0 by Crank-Nicolson method. Choose $\Delta x = \frac{1}{4}$ and $\Delta t = \frac{1}{64}$ and obtain a solution at the first time level and discuss the stability of Crank 14 Instructions : I Answar any five
- 7. a) Solve one-dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ explicitly with conditions $u(x, 0) = \sin \pi x, \ \frac{\partial u}{\partial t}(x, 0) = 0; \ 0 \le x \le 1, \ u(0, t) = 0, \ u(1, t) = 0, \ t \ge 0 \ \text{with}$

$$\Delta x = \frac{1}{4}, \Delta t = \frac{1}{64}$$
. Obtain the solution at second time level.

- b) Derive the first Lees alternating direction implicit method applied to two (7+7)dimensional wave equation.
- 8. Find a solution for $u_t = u_{xx} + u_{yy}$, $0 \le x, y \le 1, t \ge 0$ with $u(x, y, 0) = \sin \pi x \sin \pi y$ and u = 0 on the boundary points using alternating direction implicit method choosing $\Delta x = \Delta y = \frac{1}{3}$, $\Delta t = \frac{1}{72}$.

solve
$$\frac{d^2y}{dx^2} = x \frac{dy}{dx} + y$$
 subject to $y(0) = 0$; $y(0.2) = 1$

- b) Discuss the stability of the Schmidt method applied to one dimensional heat

14