III Semester M.Sc. Degree Examination, April/May 2022
 (Y2K17/Y2K14) (CBCS) MATHEMATICS
 M305T : Numerical Analysis - II

Time : 3 Hours
Max. Marks : 70
Instructions: i) Answer any five full questions.
ii) All questions carry equal marks.

1. a) Solve by three iterations of the Picard's method for the initial value problem

$$
\frac{d^{2} y}{d x^{2}}+x y=0 ; y(0)=1, \frac{d y(0)}{d x}=0 \text { and estimate } y(0.05)
$$

b) Solve $\frac{d y}{d x}=y+e^{x} ; y(0)=0$, find $y(0.2)$ taking $h=0.2$ by modified Euler's method.
2. a) By making use of the classical, explicit Runge-Kutta method of fourth order, solve

$$
\begin{aligned}
& \frac{d y}{d x}=3 y+2 z ; y(0)=1 \\
& \frac{d z}{d x}=3 y-4 z ; z(0)=0 \text { and compute } y(0.05) \text { and } z(0.05)
\end{aligned}
$$

b) Discuss the stability of Runge-Kutta method of order two and four.
3. a) Derive the three-step Adams-Bashforth method for $\frac{d y}{d x}=f(x, y) ; y\left(x_{0}\right)=y_{0}$.
b) Solve $\frac{d^{2} y}{d x^{2}}=x+y$ with $y(0)=0, y(1)=1$ by finite difference method taking $\Delta x=0.25$ one iteration by Gauss Seidel method.
4. Describe the shooting method for the solution of higher order differential equations. Hence, solve $\frac{d^{2} y}{d x^{2}}=x \frac{d y}{d x}+y$ subject to $y(0)=0 ; y(0.2)=1$.
5. a) Solve the Poisson's equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=x^{2}+y^{2} ; 0 \leq x \leq 1,0 \leq y \leq 1$ with $u=0$ on the boundary of unit square, choosing $\Delta x=\Delta y=\frac{1}{3}$.
b) Discuss the stability of the Schmidt method applied to one dimensional heat equation.
6. Solve the IBVP $\frac{\partial u}{\partial t}+\frac{\partial^{2} u}{\partial x^{2}} ; 0 \leq x \leq 1, t \geq 1$ subject to $u(x, 0)=x(1-x) ; 0 \leq x \leq 1$ $\left.\begin{array}{l}u(0,1)=0 \\ u(1, t)=0\end{array}\right\} t \geq 0$ by Crank-Nicolson method. Choose $\Delta x=\frac{1}{4}$ and $\Delta t=\frac{1}{64}$ and obtain a solution at the first time level and discuss the stability of Crank Nicolson Implicit method.
7. a) Solve one-dimensional wave equation $\frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}$ explicity with conditions $u(x, 0)=\sin \pi x, \frac{\partial u}{\partial t}(x, 0)=0 ; 0 \leq x \leq 1, u(0, t)=0, u(1, t)=0, t \geq 0$ with $\Delta x=\frac{1}{4}, \Delta t=\frac{1}{64}$. Obtain the solution at second time level.
b) Derive the first Lees alternating direction implicit method applied to two dimensional wave equation.
8. Find a solution for $u_{t}=u_{x x}+u_{y y}, 0 \leq x, y \leq 1, t \geq 0$ with $u(x, y, 0)=\sin \pi x \sin \pi y$ and $\mathrm{u}=0$ on the boundary points using alternating direction implicit method choosing $\Delta x=\Delta y=\frac{1}{3}, \Delta t=\frac{1}{72}$.

