No. of Printed Pages: 3

GS-321

II Semester B.A./B.Sc. Examination, May/June - 2019 CBCS (F+R) (2014-15 & onwards)

MATHEMATICS

Mathematics (Paper - 2)

Time: 3 Hours

Max. Marks: 70

Instructions: Answer all Parts.

PART- A

Answer any five sub-questions:

5x2=10

- 1. (a) The binary operation * is defined on the set Z of integers by a*b=a+b-2 $\forall a,b \in \mathbb{Z}$. Find the identity element.
 - (b) If $f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ and $g = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ Find fog.
 - (c) Find the angle between the radius vector and the tangent to the curve r = a0.
 - (d) Find the length of the polar subnormal to the curve $r = a\cos 2\theta$ at $\theta = \frac{\pi}{3}$.
 - (e) Find $\frac{ds}{dx}$ for the curve $y^2 = 4ax$
 - (f) Write the formula to find the length of an arc of the curve y=f(x) from x=a to x=b.
 - (g) Find the integrating factor of:

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2}{x} y = x \log x$$

(h) Find the general solution of $y = px + \frac{p}{p-1}$

PART - B

Answer one full question:

1x15=15

- 2. (a) Show that the set of all fourth roots of unity forms an abelian group under multiplication.
 - (b) Prove that the inverse of an element in a group is unique.
 - (c) Show that the set {0, 3, 6, 9} is a subgroup of G={0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} under addition modulo 12.

OR

- 3. (a) Let G be the set of all non-zero rational numbers and * be the binary operation on G defined by $a*b = \frac{a.b}{7} \ \forall \ a, \ b \in G$ then prove that (G, *) is a group.
 - (b) If 'a' and 'b' are any two elements of a group (G, *) then prove that $(a*b)^{-1}=b^{-1}*a^{-1} \ \forall \ a,\ b \in G.$
 - (c) Prove that $G = \{2, 4, 6, 8\}$ forms an abelian group under multiplication modulo 10.

PART - C

Answer two full questions :

2x15=30

- **4.** (a) Show that the curves $r = a(1 + \cos\theta)$ and $r = b(1 \cos\theta)$ cut orthogonally.
 - (b) With usual notations prove that
 - (i) $p = r \sin \phi$

(ii)
$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$$

(c) Find the radius of curvature of the curve $x^4 + y^4 = 2$ at the point (1, 1).

OR

- 5. (a) Find the angle between the curves $r = \sin\theta + \cos\theta$ and $r = 2\sin\theta$
 - (b) Find the pedal equation of the curve $r^n = a^n \sin \theta$
 - (c) Find the envelope of the family of lines $y = mx + \frac{a}{m}$ where 'm' is a parameter.

- 6. (a) Find all the asymptotes of the curve $y^3 x^2y + 2y^2 + 4y + 1 = 0$
 - (b) Find the area bounded by the cardiod $r = a(1 + \cos\theta)$
 - (c) Find the volume of the solid generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ (a > b) about } x\text{-axis.}$

OR

- 7. (a) Find the centre of curvature of the curve $xy = a^2$ at (a, a)
 - (b) Find the position and nature of the double points of the curve. $x^3 + 2x^2 + 2xy y^2 + 5x 2y = 0$
 - (c) Find the surface area of the solid generated by the revolution of the curve $x=a\cos^3 t$, $y=a\sin^3 t$ about the x-axis.

PART - D

Answer one full question:

1x15=15

8. (a) Solve:

$$\frac{dy}{dx} + \frac{1}{1+x^2}$$
 $y = \frac{\tan^{-1}x}{1+x^2}$

- (b) Verify for exactness and solve $(x^2-ay) dx+(y^2-ax) dy=0$
- (c) Solve $p^2 + 2py \cot x y^2 = 0$

OR

- **9.** (a) Solve : $\frac{dy}{dx} \frac{2}{x} y = \frac{y^2}{x^3}$
 - (b) Find the general and singular solution of sinpx.cosy = cospx siny + p
 - (c) Find the orthogonal trajectories of the family of parabolas $y^2 = 4ax$ where 'a' is a parameter.