

I Semester B.C.A. Degree Examination, March/April 2022 (Y2K14) (CBCS) (Repeaters) COMPUTER SCIENCE

BCA 105 T : Discrete Mathematics

Time: 3 Hours

Max. Marks: 100

Instruction : Answer all Sections.

sneitibnes navig and to evilla SECTION - A

I. Answer any ten of the following. Each question carries 2 marks. (10×2=20)

1) If $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 7, 8\}$ find B - A and A - B.

2) If $A = \{2, 3, 4, 5\}$ and $B = \{0, 1, 2, 3\}$ find $A \cap B$.

3) Define Tautology.

4) Find x, y, z if
$$\begin{bmatrix} 4-y & 3 \\ x & 5 \end{bmatrix} = \begin{bmatrix} -6 & z+2 \\ 8 & 5 \end{bmatrix}$$

5) Construct truth table for proposition pv~q.

6) Find the characteristics equation of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$.

7) Find the value of ⁵P₂.

8) If $\log x_7 + \log x_7^2 + \log x_7^3 = 6$ find x.

9) Define abelian group.

10) If $\vec{a} = 2\hat{i} + 3\hat{j} - 4k$, $\vec{b} = 3\hat{i} - 4\hat{j} - 5\hat{k}$ find $|\vec{a} + \vec{b}|$. who reduces the second second

11) Find the distance between the point A = (-9, 6) and B = (-7, -3).

12) Find the equation of the line with slope 2 and cutting off an intercept 3 on y-axis.

SSOS Ing Aviorabilities SECTION - B = C A.D. S retaems 2.1

- II. Answer any six of the following. Each question carries 5 marks. (6×5=30)
 - 13) Prove that $(p \land q) \land \sim (p \lor q)$ is contradiction.
 - 14) Prove that $\sim (p \leftrightarrow) \equiv \sim [(p \rightarrow q) \land (q-p)].$
 - 15) If $A = \{1, 4\} B = \{2, 3, 6\} C = \{2, 3, 7\}$ then verify that $A \times (B C) = (A \times B) (A \times C)$.
 - 16) Write the inverse, converse and contra-positive of the given conditional "if two angles are right angles, then they are congruent".
 - 17) If $R \to R$ is defined by f(x) = 2x + 5 prove that 'f' is one to one and onto.
 - 18) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ and also find inverse.
 - 19) If $A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$ find $A^2 7A 2I$.
 - 20) Solve the equation 5x + 2y = 4, 7x + 3y = 5 using matrix method.

SECTION - C

- III. Answer any six of the following. Each question carries 5 marks. (6x5=30)
 - 21) If $\log \left(\frac{a-b}{5}\right) = \frac{1}{2} (\log a + \log b)$ show that $a^2 + b^2 = 27ab$.
 - 22) Find 'r' if ${}^{15}P_{n-1}$: ${}^{16}P_{r-2} = 3:4$.
 - 23) Find the number of ways in which 8 boys and 5 girls can be arranged in a row so that no two girls are together.
 - 24) Prove that the set $G = \{1, -1, i, -i\}$ from an abelian group under multiplication.
 - 25) Show that the set of all cubeth roots of unity from a group under multiplication.

- 26) If $\vec{a} = \hat{i} 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} 5\hat{k}$ find $\vec{a} \times \vec{b}$ verify that \vec{a} and $(\vec{a} \times \vec{b})$ are perpendicular to each other.
- 27) Prove that $\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = 0$.
- 28) If vector $2\hat{i}-3\hat{j}+m\hat{k}$, $2\hat{i}+\hat{j}-\hat{k}$ and $6\hat{i}-\hat{j}+2\hat{k}$ are coplanar. Find m.

SECTION - D

- IV. Answer any four of the following. Each question carries 5 marks. (4×5=20)
 - 29) Show that the points (3, 2) (0, 5) (-3, 2) and (0, -1) are vertices of a square.
 - 30) Find the ratio in which the x-axis divides the line segment joining the points (7, -3) and (5, 2).
 - 31) Find the equation of the straight line which passes through the point of intersection of the lines 3x + y 10 = 0 and x + 7y 10 = 0 and parallel to the line 4x 3y + 1 = 0.
 - 32) Find the equation of the locus of the point which moves such that it is equidistant from the points (1, 2) and (-2, 3).
 - 33) Find the value of K if the lines
 - i) 3x + 2y + 1 = 0 and Kx + 2y 1 = 0 are parallel.
 - ii) 5x 4y + 8 = 0 and 4x + Ky + 3 = 0 are perpendicular.
 - 34) Prove that the points (2, 2) and (-3, 3) are equidistant from the line x + 3y 7 = 0 and are on either side of the line.