

NP - 164

I Semester B.C.A. Degree Examination, May 2022 (NEP – 2021-22 and Onwards) COMPUTER SCIENCE Paper – 1.3 : Data Structures

Time : 21/2 Hours

Max. Marks: 60

Instruction : Answer all Sections.

PART – A

I. Answer any 4 of the following :

(4×2=8)

 $(4 \times 5 = 20)$

- 1) How to measure the complexity of an algorithm ?
- 2) What is an Abstract Data type ? Give an example.
- 3) Explain overflow and underflow conditions in stack.
- 4) What is a Binary Search Tree ? Give an example.
- 5) Mention any two types of Graphs.
- 6) What do you mean by Chaining in Collision Resolution ?

PART – B

II. Answer any 4 of the following :

- 7) Define sparse matrix. Write a C program to check whether given matrix is SPARSE or NOT.
- 8) Write an algorithm for ENQUEUE and DEQUEUE operations.
- 9) What is Recursion ? Write a program to print Fibonacci series using Recursive function.
- 10) Write Pre-order, In-order, Post-order, Traversal for the given Tree.

P.T.O.

NP - 164

- 11) Write an Algorithm for Insertion sort. Give the analysis for Insertion sort.
- 12) Write a note on.
 - a) Adjacency Matrix
 - b) Adjacency list.

PART – C

11.	Ans	wer	r any 4 of the following :	4×8=32)
	13)	a) b)	Explain different Asymptotic Notations. Write an algorithm to insert an element into an array.	5 3
	14)	a) b)	Mention and explain the types of linked lists in brief. Explain Towers of Hanoi problem with an algorithm.	4
	15)	a)	Convert the following infix notation expression to postfix notation. ($a + b c * d$) – f + e	5
	16)	b) Ex	Explain underflow and overflow with respect to Queues.	8
	05=1	C	18 32 14 9 45 06 55 16	
	17)	a)	Define Hashing. Explain Hash Table and Hash function with an example.	6
	18)	b) Co In	Dist any two Probing Methods. onstruct binary tree. Given inorder and Post order traversals. order : 6 + 2 * 3/9 % 2	9 (9) Wi Be Re Pe
		Po	ost order : 62 + 392 % / *	