I Semester M.Sc. Examination, February - 2020
(CBCS-Y2K17/Y2K14 Scheme)
MATHEMATICS
M101T : Algebra - I
Time: 3 Hours
Max. Marks : 70
Instructions: (i) Answer any 5 questions.
(ii) All questions carry equal marks.

1. (a) If N and M are normal subgroups of G, then prove that $\frac{N M}{M} \approx \frac{N}{N \cap M}$. $6+4+\mathbf{4}$
(b) Show that $\mathrm{T}: \mathrm{G} \rightarrow \mathrm{G}$ defined by $\mathrm{T}(x)=x^{-1}$ is an automorphism if and only if G is abelian.
(c) For the symmetric group S_{3}, prove that Aut $S_{3} \approx \operatorname{Inn} S_{3}$, where Aut S_{3} is group of automorphisms of S_{3} and Inn S_{3} is group of inner automorphisms of S_{3}.
2. (a) Let G be a finite group and S is a finite G -set. If $x \in \mathrm{~S}$, then show that $o\left(G_{x}\right)=o(G) / o(\operatorname{stab}(x))$.
$5+4+5$
(b) Derive the class equation for finite groups.
(c) Define a p-group. If G is a finite group of prime power order. Prove that G has a non-trivial center.
3. (a) Show that the number of p-sylow subgroups of G, for a given prime, is congruent to 1 modulo p .
$6+4+4$
(b) Let $O(G)=p q$, where p and q are distinct primes with $p<q$ and $\mathrm{q} \not \equiv 1(\bmod \mathrm{p})$. Then prove that G is abelian and cyclic.
(c) Show that every group of order $11^{2} .13^{2}$ is abelian.
4. (a) Define a solvable group. Prove that every subgroup of a solvable group is 7+7 solvable. Further, show that symmetric group S_{4} is solvable, but not simple.
(b) State and prove the Jordan-Holder Theorem.
5. (a) If R is a ring with unity in which $\{0\}$ and R are the only two left ideals, then prove that R is a division ring.
(b) Let R and R^{\prime} be two rings and ϕ be a homomorphism of R onto R^{\prime} with Kernel \mho. Then show that :
(i) $\mathrm{R}^{\prime} \approx \mathrm{R} / \mho$
(ii) There is one to one correspondence between the set of ideals W^{\prime} of R^{\prime} and the set of ideals W of R containing \mho.
(iii) $R / W \approx R^{\prime} / W^{\prime}$
6. (a) Define
(i) Principal ideal of a ring
(ii) Prime ideal of a ring
(b) Define a maximal ideal of a ring R. If R is a commutative ring with unity and M is an ideal of R, then show that M is a maximal ideal of R if and only if R / M is a field.
(c) Show that the quotient field is the smallest field containing D, where D is an integral domain.
7. (a) Show that the ring $Z[\mathrm{i}]$ of Gaussian integer is an Euclidean Ring. 4+4+6
(b) Show that every Euclidean ring is a principle ideal ring.
(c) If p is a prime number of the form $4 n+1$, prove that $p=a^{2}+b^{2}$ for some integers a, b.
8. (a) State and prove Gauss Lemma. $\mathbf{6 + 8}$
(b) State and prove the Eisenstein criterian for the irreducibility of a polynomial with integer coefficients over the rationals.
