PJ-274

MATHEMATICS
 M103T : Topology - I

Time: 3 Hours
Instructions : (i) Answer any five questions.
(ii) All questions carry equal marks.

1. (a) Show that if X is an infinite set and $x_{0} \in X$ then $X-\left\{x_{0}\right\}$ is also an infinite
set.

Max. Marks : 70
(b) Prove that a set X is finite if and only if $X=Q$ or X is in one-one correspondence with $N_{k}=\{1,2, \ldots, k)$ for same $k \in \mathbb{N}$.
(c) Define a denumerable set. Prove that every subset of a denumerable set is either finite or denumerable.
2. (a) State and Prove Schroder-Bernstein theorem.
(b) With usual notations Prove $2^{\gamma_{0}}=c$.
3. (a) If (X, d) is a metric space then show that $\mathrm{P}(x, y)=\frac{\mathrm{d}(x, y)}{1+\mathrm{d}(x, y)}, \forall x, y \in \mathrm{X}$ is a metric space.
(b) Show that in a metric space the following are equivalent :
(i) $\mathrm{X}-\mathrm{A}$ is open
(ii) $d(A) \subseteq A$ for any $A \subseteq X$
(c) Show that in a metric space, every convergent sequence has a unique
limit.
4. (a) State and Prove Baire Category theorem.
(b) Show that $C(X, R)$, the collection of all continuous bounded mappings from a metric space X into \mathbf{R} is a complete metric space.
5. (a) Prove that every superset of a neighbourhood of a point is a neighbourhood and intersection of two neighbourhoods is a neighbourhood.
(b) Let A be any subset of (X, Y). Then Prove that $A^{0}=\left(\bar{A}^{\prime}\right)^{\prime}$, where $A^{\prime}=X-A$.
(c) Prove for any subsets A and B of a topological space (X, Y), $\overline{\mathrm{A} \cup \mathrm{B}}=\overline{\mathrm{A}} \cup \bar{B}$
6. (a) Prove that a function $f: X \rightarrow Y$ is continuous at x if and only if for every $8+6$ neighbourhood V of $f(x), f^{-1}(x)$ is a neighbourhood of x. Further, prove that $f: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous if and only if inverses of open sets are open.
(b) Show that a bijective function $f: \mathrm{X} \rightarrow \mathrm{Y}$ is a homeomorphism if and only if $f(\overline{\mathrm{~A}})=\overline{f(\mathrm{~A})}$ for any set $\mathrm{A} \subseteq \mathrm{X}$.
7. (a) State and Prove Pasting lemma.
(b) Show that the closure of a connected set is connected.
(c) Show that continuous image of a connected set is connected.
8. (a) Define a Path connected space. Show that a path connected space is always connected.
(b) Prove that a continuous image of a path connected space is path
(c) Define Components. Prove that components are always closed.
5. (a) Prove that every superset of a neighbourhood of a point is a neighbourhood and intersection of two neighbourhoods is a neighbourhood.
$5+5+4$
(b) Let A be any subset of (X, Y). Then Prove that $A^{0}=\left(\bar{A}^{\prime}\right)^{\prime}$, where $A^{\prime}=X-A$.
(c) Prove for any subsets A and B of a topological space (X, Y), $\overline{\mathrm{A} \cup \mathrm{B}}=\overline{\mathrm{A}} \cup \overline{\mathrm{B}}$
6. (a) Prove that a function $f: X \rightarrow Y$ is continuous at x if and only if for every $8+6$ neighbourhood V of $f(x), f^{-1}(x)$ is a neighbourhood of x. Further, prove that $f: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous if and only if inverses of open sets are open.
(b) Show that a bijective function $f: \mathrm{X} \rightarrow \mathrm{Y}$ is a homeomorphism if and only if $f(\overline{\mathrm{~A}})=\overline{f(\mathrm{~A})}$ for any set $\mathrm{A} \subseteq \mathrm{X}$.
7. (a) State and Prove Pasting lemma.
(b) Show that the closure of a connected set is connected.
(c) Show that continuous image of a connected set is connected.
8. (a) Define a Path connected space. Show that a path connected space is always connected.
(b) Prove that a continuous image of a path connected space is path
connected.
(c) Define Components. Prove that components are always closed.

