No. of Printed Pages : 2

PJ-274

100227

I Semester M.Sc. Examination, February - 2020 (CBCS-Y2K17/Y2K14 Scheme)

MATHEMATICS

M103T: Topology - I

Time : 3 Hours

Max. Marks: 70

Instructions : (i) Answer any five questions. (ii) All questions carry equal marks.

- (a) Show that if X is an infinite set and x₀∈X then X-{x₀} is also an infinite set.
 4+4+6
 - (b) Prove that a set X is finite if and only if X = Q or X is in one-one correspondence with $N_k = \{1, 2, ..., k\}$ for same $k \in \mathbb{N}$.
 - (c) Define a denumerable set. Prove that every subset of a denumerable set is either finite or denumerable.
- 2. (a) State and Prove Schroder-Bernstein theorem.
 - (b) With usual notations Prove $2^{\gamma_0} = c$.
- 3. (a) If (X, d) is a metric space then show that $P(x, y) = \frac{d(x, y)}{1+d(x, y)}$, $\forall x, y \in X$ is a metric space. 5+5+4
 - (b) Show that in a metric space the following are equivalent :
 - (i) X-A is open

8+6

- (ii) $d(A) \subseteq A$ for any $A \subseteq X$
- (c) Show that in a metric space, every convergent sequence has a unique limit.
- 4. (a) State and Prove Baire Category theorem.
 - (b) Show that C(X, R), the collection of all continuous bounded mappings from a metric space X into R is a complete metric space.
 8+6

P.T.O.

- 5. (a) Prove that every superset of a neighbourhood of a point is a neighbourhood and intersection of two neighbourhoods is a neighbourhood.
 5+5+4
 - (b) Let A be any subset of (X, Y). Then Prove that $A^0 = (\overline{A}')'$, where A' = X A.
 - (c) Prove for any subsets A and B of a topological space (X, Y), $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- **6.** (a) Prove that a function $f: X \rightarrow Y$ is continuous at x if and only if for every **8+6** neighbourhood V of f(x), $f^{-1}(x)$ is a neighbourhood of x. Further, prove that $f: X \rightarrow Y$ is continuous if and only if inverses of open sets are open.
 - (b) Show that a bijective function $f: X \rightarrow Y$ is a homeomorphism if and only if $f(\overline{A}) = \overline{f(A)}$ for any set $A \subseteq X$.
- 7. (a) State and Prove Pasting lemma.

5+5+4

- (b) Show that the closure of a connected set is connected.(c) Show that continuous image of
- (c) Show that continuous image of a connected set is connected.
- 8. (a) Define a Path connected space. Show that a path connected space is always connected.
 - (b) Prove that a continuous image of a path connected space is path connected.
 - (c) Define Components. Prove that components are always closed.

-000-

2

- (a) Prove that every superset of a neighbourhood of a point is a neighbourhood and intersection of two neighbourhoods is a neighbourhood.
 5+5+4
 - (b) Let A be any subset of (X, Y). Then Prove that $A^0 = (\overline{A}')'$, where A' = X A.
 - (c) Prove for any subsets A and B of a topological space (X, Y), $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- **6.** (a) Prove that a function $f: X \rightarrow Y$ is continuous at x if and only if for every **8+6** neighbourhood V of f(x), $f^{-1}(x)$ is a neighbourhood of x. Further, prove that $f: X \rightarrow Y$ is continuous if and only if inverses of open sets are open.
 - (b) Show that a bijective function $f: X \rightarrow Y$ is a homeomorphism if and only if $f(\overline{A}) = \overline{f(A)}$ for any set $A \subseteq X$.
- 7. (a) State and Prove Pasting lemma.

5 + 5 + 4

- (b) Show that the closure of a connected set is connected.
- (c) Show that continuous image of a connected set is connected.
- 8. (a) Define a Path connected space. Show that a path connected space is always connected.
 5+4+5
 - (b) Prove that a continuous image of a path connected space is path connected.
 - (c) Define Components. Prove that components are always closed.

-000-