I Semester M.Sc. Degree Examination, August/September 2021

(CBCS-Y2K17/Y2K14)
MATHEMATICS
M 101 T : Algebra - I

Time : 3 Hours
Max. Marks : 70
Instructions : 1) Answer any five questions.
2) All questions carry equal marks.

1. a) Let $\phi: \mathrm{G} \rightarrow \overline{\mathrm{G}}$ be a homomorphism with Kernel K and let \bar{N} be a normal subgroup of $\overline{\mathrm{G}}$ and $\mathrm{N}=\{\mathrm{g} \in \mathrm{G}: \phi(\mathrm{g}) \in \overline{\mathrm{N}}\}$. Prove that $\mathrm{G} / \mathrm{N} \cong \overline{\mathrm{G}} / \overline{\mathrm{N}}$.
b) Write Aut $\left(\mathrm{K}_{4}\right)$, where K_{4} is Klein-four group. Hence illustrate that the automorphism group of an abelian group need not be abelian.
c) State and prove Cayley's theorem.
2. a) State and prove the Orbit-Stabilizer theorem.
b) If G is a finite group and $a \in G$, prove that $C_{a}=\frac{O(G)}{O(N(a))}$, where $N(a)$ is the normalizer of ' a ' and C_{a} is the conjugacy class of a in G.
c) Prove that every group of order p^{2}, for some prime ' p ' is abelian.
3. a) State and prove Sylow's first theorem.
b) Let G be a group of order $p q$, where p and q are primes with $p<q$ and $q \equiv 1(\bmod p)$. Show that G is non-abelian.
4. a) Define a simple group. Show that a group of order 28 is solvable but not simple.
b) If a group G has a composition series, then show that all its composition series are pairwise equivalent.
c) Give an example of a non abelian solvable group.
5. a) Let R be a commutative ring with unity whose ideals are (O) and R only. Prove that R is a field.
b) If U is an ideal of a ring R and $[R: U]=\{x \in R ; r x \in U, \forall r \in R\}$, then prove that $[R: U]$ is an ideal of R containing U.
c) State and prove fundamental theorem of homomorphism for rings.
6. a) Define principal ideal of a ring R. Show that the ring z of all integers is a principal ideal ring.
b) Prove that the ideal of the ring Z of integers is maximal if and only if it is generated by some prime integer in Z.
c) Show that any two isomorphic integral domains have isomorphic quotient fields.
7. a) Define a Euclidean ring. Let $x=a+i b$ and $y=c+i d$ be any two elements in $z[i]-\{0\}$. Prove that it is an Euclidean ring.
b) Let R be an Euclidean ring and $a, b, \in R$ be non-zero with ' b ' non-unit. Then prove that $d(a)<d(a b)$.
c) State and prove the unique factorization theorem.
8. a) Prove that $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$, for $f, g \in R[x]$. Further if R is an integral domain, then show that $R[x]$ is also an integral domain.
b) State and prove Euclid's algorithm for polynomials over a field.
c) Let $A=\left(x^{2}+x+1\right)$ be an ideal generated by $x^{2}+x+1 \in z_{2}[x]$. Verify that A is a maximal ideal in $z_{2}[x]$.
$(4+6+4)$
