

First Semester M.Sc. Degree Examination, August/September 2021 (CBCS – Y2K17/Y2K14) MATHEMATICS M 102 T : Real Analysis

Time: 3 Hours	Max. Marks: 70
Instructions: 1) Answer any five questions. 2) All questions carry equal marks.	
1. a) Evaluate $\int\limits_0^3 x \ d\{[x]\}$ where [x] is the maximum integer func	tion. 4
b) If $f \in R[\alpha]$ on $[a, b]$, then prove that $\int_{\underline{a}}^{\underline{b}} f d\alpha = \int_{\underline{a}}^{\overline{b}} f d\alpha = \int_{\underline{a}}^{\underline{b}} f d\alpha = \lambda[\alpha]$ $\lambda \in [m, M]$.	(b) $-\alpha(a)$], where 5
c) If P* is a refinement of partition P of [a, b], then show th $(P^*, f, \alpha) \le U$ $(P^*, f, \alpha) \le U$ (P, f, α) .	that $L(P, f, \alpha) \le L$ 5
2. a) If $f \in R[\alpha]$ on $[a, b]$, $f(x) \in [m, M]$ for all $x \in [a, b]$ and ϕ i $[m, M]$, then prove that $\phi \cdot f \in R[\alpha]$ on $[a, b]$.	s continuous on
b) If $f(x)$ is continuous on [a, b] and $\alpha(x)$ be monotonic on [a, b]	a, b], prove that
$\int_{a}^{b} f d\alpha = f(b)\alpha(b) - f(a)\alpha(a) - \alpha(\xi)[f(b) - f(a)] \text{ where } \xi \in (a, b)$	
c) Give an example of a function f such that $ f \in R [\alpha]$ on [0, on [0, 1].	, 1] and $f \notin R[\alpha]$
3. a) Consider the functions $\beta_1(x)$ and $\beta_2(x)$ defined as follows:	- Tiol fd
$\beta_1(x) = \begin{cases} 0, & \text{when } x \le 0 \\ 1, & \text{when } x > 0 \end{cases}$	
$\beta_2(x) = \begin{cases} 0, & \text{when } x < 0 \\ 1, & \text{when } x \ge 0 \end{cases}$	
Verify whether $\beta_1(x) \in R[\beta_2(x)]$ on $[-1, 1]$.	7
b) If f and ϕ are continuous on [a, b] and ϕ is strictly increasing	ng on [a, b] and
ψ is an inverse function of ϕ , then prove that $\int_a^b f(x)dx = \int_{\phi(a)}^{\phi(b)} f(x)dx$)
c) Prove that a function of bounded variation on [a, b] is bou	nded. 2
	P.T.O.

4. a) State and prove Cauchy's principle for uniform convergence of i) $\{f_n(x)\}\$ on [a, b]ii) $\sum_{n=1}^{\infty} f_n(x)$ on [a, b] 10 b) Show that for -1 < x < 1, the series $\frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + ... = \frac{1}{1-x}$. 5. a) Let $\{f_n(x)\}$ be a sequence of differentiable functions such that the sequence converges for atleast one-point $t \in [a, b]$. If the sequence of the derivatives of $f_n(x),$ that is $\left\{f_n'(x)\right\}$ is uniformly convergent to F(x) on [a, b], then prove that $\{f_n(x)\}$ is uniformly convergent to f(x) on [a, b] and that 7 $f'(x) = F(x), \forall x \in [a, b].$ b) Let $\{f_n(x)\}\$ be a sequence of functions uniformly convergent to f(x) on [a, b] and each $f_n(x) \in R$ [a, b]. Prove the following : i) $f(x) \in R[a, b],$ ii) $\int_{a} \lim_{n \to \infty} f_n(t) dt = \lim_{n \to \infty} \int_{a}^{\infty} f_n(t) dt.$ 7 7 6. a) State and prove the Hiene-Borel theorem. 7 b) Define a K-cell. Prove that every K-cell is compact. 7. a) Let 'E' be an open subset of R^n and $f: E \to R^n$ be differentiable at a point $x_0 \in E$. Let 'F' be an open subset of R^n containing 'E' and $g: F \to R^k$ be differentiable at $f(x_0)$. If $\phi = g \circ f : E \to R^k$, then prove that ϕ is differentiable 6 at $x_0 \in E$ and $\phi'(x_0) = g'(f(x_0)) \circ f'(x_0)$. b) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a mapping with $T = (T_1, T_2, ..., T_m)$. Prove that 'T' is linear 2 transformation if and only if T_i (i = 1, 2,...,m) are linear transformations. c) If $\phi: X \to X$ is a contraction on a complete metric space X, then prove that 6 has a unique fixed point. 14 State and prove the inverse function theorem.