PG - 647

First Semester M.Sc. Degree Examination, August/September 2021

(CBCS - Y2K17/Y2K14)
 MATHEMATICS
 M 102 T : Real Analysis

Time: 3 Hours
Max. Marks : 70
Instructions : 1) Answer any five questions.
2) All questions carry equal marks.

1. a) Evaluate $\int_{0}^{3} x d\{[x]\}$ where $[x]$ is the maximum integer function.

4
b) Iff $\begin{aligned} & \lambda \in R[\alpha] \text { on }[a, b] \text {, then prove that } \int_{a}^{b} f d \alpha=\int_{a}^{5} f d \alpha=\int_{a}^{b} f d \alpha=\lambda[\alpha(b)-\alpha(a)] \text {, where } \\ & \lambda \in[\mathrm{M}] \text {. }\end{aligned}$ 5
c) If P^{*} is a refinement of partition P of $[a, b]$, then show that $L(P, f, \alpha) \leq L$
$\left(P^{*}, f, \alpha\right) \leq U\left(P^{*}, f, \alpha\right) \leq U(P, f, \alpha)$.
2. a) If $f \in R[\alpha]$ on $[a, b], f(x) \in[m, M]$ for all $x \in[a, b]$ and ϕ is continuous on $[m, M]$, then prove that $\phi \cdot f \in R[\alpha]$ on $[a, b]$.
b) If $f(x)$ is continuous on $[a, b]$ and $\alpha(x)$ be monotonic on $[a, b]$, prove that $\int_{a}^{b} f d \alpha=f(b) \alpha(b)-f(a) \alpha(a)-\alpha(\xi)[f(b)-f(a)]$ where $\xi \in(a, b)$.
c) Give an example of a function f such that $|f| \in R[\alpha]$ on $[0,1]$ and $f \notin R[\alpha]$ on $[0,1]$.
3. a) Consider the functions $\beta_{1}(x)$ and $\beta_{2}(x)$ defined as follows:
$\beta_{1}(x)= \begin{cases}0, & \text { when } x \leq 0 \\ 1, & \text { when } x>0\end{cases}$
$\beta_{2}(x)= \begin{cases}0, & \text { when } x<0 \\ 1, & \text { when } x \geq 0\end{cases}$
Verify whether $\beta_{1}(x) \in R\left[\beta_{2}(x)\right]$ on $[-1,1]$.
7
b) If f and ϕ are continuous on $[a, b]$ and ϕ is strictly increasing on $[a, b]$ and ψ is an inverse function of ϕ, then prove that $\int_{a}^{b} f(x) d x=\int_{\phi(a)}^{\phi(b)} f(\psi(g)) d \psi(g) . \quad 5$
c) Prove that a function of bounded variation on $[\mathrm{a}, \mathrm{b}]$ is bounded.
4. a) State and prove Cauchy's principle for uniform convergence of
i) $\left\{f_{n}(x)\right\}$ on $[a, b]$
ii) $\sum_{n=1}^{\infty} f_{n}(x)$ on $[a, b]$
b) Show that for $-1<x<1$, the series $\frac{1}{1+x}+\frac{2 x}{1+x^{2}}+\frac{4 x^{3}}{1+x^{4}}+\ldots=\frac{1}{1-x}$.
5. a) Let $\left\{f_{n}(x)\right\}$ be a sequence of differentiable functions such that the sequence converges for atleast one-point $t \in[a, b]$. If the sequence of the derivatives of $f_{n}(x)$, that is $\left\{f_{n}^{\prime}(x)\right\}$ is uniformly convergent to $F(x)$ on $[a, b]$, then prove that $\left\{f_{n}(x)\right\}$ is uniformly convergent to $f(x)$ on $[a, b]$ and that $f^{\prime}(x)=F(x), \forall x \in[a, b]$.
b) Let $\left\{f_{n}(x)\right\}$ be a sequence of functions uniformly convergent to $f(x)$ on $[a, b]$ and each $f_{n}(x) \in R[a, b]$. Prove the following:
i) $f(x) \in R[a, b]$,
ii) $\int_{a}^{x} \lim _{n \rightarrow \infty} f_{n}(t) d t=\lim _{n-\infty} \int_{a}^{x} f_{n}(t) d t$.
6. a) State and prove the Hiene-Borel theorem. 7
b) Define a K-cell. Prove that every K-cell is compact. 7
7. a) Let ' E ' be an open subset of R^{n} and $f: E \rightarrow R^{n}$ be differentiable at a point $x_{0} \in E$. Let ' F ' be an open subset of R^{n} containing ' E ' and $g: F \rightarrow R^{k}$ be differentiable at $f\left(x_{0}\right)$. If $\phi=g \circ f: E \rightarrow R^{k}$, then prove that ϕ is differentiable at $x_{0} \in E$ and $\phi^{\prime}\left(x_{0}\right)=g^{\prime}\left(f\left(x_{0}\right)\right) \circ f^{\prime}\left(x_{0}\right)$.
b) Let $T: R^{n} \rightarrow R^{m}$ be a mapping with $T=\left(T_{1}, T_{2}, \ldots, T_{m}\right)$. Prove that ' T ' is linear transformation if and only if $T_{i}(i=1,2, \ldots, m)$ are linear transformations.
c) If $\phi: X \rightarrow X$ is a contraction on a complete metric space X, then prove that ϕ has a unique fixed point.
8. State and prove the inverse function theorem.

