I Semester M.Sc. Examination, August/September 2021

(CBCS - Y2K17/Y2K14)
MATHEMATICS
M-103T : Topology - I
Time : 3 Hours
Max. Marks : 70
Instructions : i) Answer any five full questions.
ii) All questions carry equal marks.

1. a) Show that every subset of a denumerable set is either finite or denumerable.
b) Show that the closed interval $[0,1]$ is uncountable.
c) With usual notions prove that
i) $N_{0}+N_{0}=N_{0}$
ii) $N_{0}+C=C$.
2. a) State and prove Schroder-Bernstein theorem.
b) Let $P(A)$ be the power set of a set A. Then prove that $|P(A)|=2^{|A|}$.
c) Define :
i) Continuum hypothesis and
ii) Zorn's lemma.
3. a) State and prove Baire category theorem.
b) State and prove contraction mapping theorem.
4. a) Let X be a non-empty set and define a mapping $d: X \times X \rightarrow \mathbb{R}$ as follows

$$
d(x, y)=\left\{\begin{array}{ll}
0, & \text { when } x=y \\
1, & \text { when } x \neq y
\end{array} \quad \forall x, y \in X \text {. Then show that } d \text { is a metric on } X\right. \text {. }
$$

b) Show that every bounded infinite set has a limit point.
c) Prove that every convergent sequence is a Cauchy sequence.
5. a) Prove that an isometry is a homeomorphism but not conversely.
b) Prove that every metric space has a completion.
6. a) Let (X, τ) be a topological space and let A and B be two subsets of X. Then prove that
i) $\mathrm{d}(\phi)=0$
ii) $A \subset B \Rightarrow d(A) \subset d(B)$
iii) $d(A \cup B)=d(A) \cup d(B)$.
b) Prove that a function $f: X \rightarrow Y$ is continuous at x if and only if for every neighbourhood V of $f(x), f^{-1}(x)$ is a neighbourhood of x. Further, prove that $f: X \rightarrow Y$ is continuous if and only if inverses of open sets are open.
7. a) Show that a set $A \subseteq R$ is connected if and only if it is an interval in R.
b) Prove that the union of any family $\left\{\mathrm{C}_{\lambda}\right\}$ of connected sets having a non-empty intersection is connected.
c) Show that continuous image of a connected set is connected.
8. a) Define locally connected space. Give an example to show that a connected space is not locally connected.
b) Show that a continuous image of a path connected space is path connected.
c) Show that closure of a connected set is connected.

