

SG – 641

VI Semester B.C.A. Degree Examination, September/October 2021 (Y2K8 Scheme) COMPUTER SCIENCE BCA 601 : Design and Analysis of Algorithms

Time : 3 Hours

Max. Marks : 90/100

Instructions : 1) Section A, B, C are common to all.

- 2) Section **D** is applicable to the students who have taken admission in **2013-2014**.
- 3) **100** marks for students of **2013-14** onwards and **90** marks for repeaters prior to **2013-14**.

SECTION - A

I. Answer any ten questions. Each carries two marks :

(10×2=20)

- 1) Define time complexity of an algorithm.
- 2) Define (Big-Oh) O-notation.
- 3) Write the time complexities of
 - i) Linear search
 - ii) Quicksort.
- 4) Write the control abstraction of divide and conquer.
- 5) Define the terms :
 - i) Spanning tree
 - ii) Minimum cost spanning tree.
- 6) Mention two ways of representation of graphs.
- 7) What is an optimal solution ?
- 8) Define the term related to graphs
 - i) Adjacent vertex
 - ii) Degree of a vertex.
- 9) What is dynamic programming?

SG - 641

- 10) State the N-Queens problem.
- 11) What is backtracking ?
- 12) State the graph coloring problem.

SECTION - B

II. Answer any five questions. Each carries five marks :

(5×5=25)

- 13) Explain various basic efficiency classes of algorithms.
- 14) Write binary search algorithm.
- 15) Solve the following recurrence relation :

$$T(n) = 2T\left(\frac{n}{2}\right) + 2, T(2) = 1, T(1) = 0.$$

- 16) Write Prim's algorithm for obtaining minimum cost spanning tree.
- 17) Write Floyd's algorithm and analyze its time complexity.
- 18) Differentiate between dynamic programming and divide and conquer techniques.
- 19) Explain subset sum problem with suitable example.
- 20) Write recursive post order tree traversal algorithm and traverse the following tree.

-2-

SG - 641

SECTION - C

	Answer any three questions. Each carries fifteen marks : (3×15=	:45)
	21) a) Design an algorithm to obtain maximum of N elements and obtain the	
	time complexity.	7
	b) Solve 4-Queens problem using backtracking.	8
	22) a) Write recursive maxmin algorithm to find maximum and minimum in a	
	set of N elements.	8
	b) Trace the maxmin algorithm for the following set.	7
	32 74 -16 -28 99 10 25 -7 68	
	23) a) Explain greedy strategy with control abstraction.	7
	b) Solve the fractional knapsack problem for an optimal solution. Also	
	compute the maximum profit earned.	8
	Weights $(w_1, w_2, w_3, w_4, w_5) = (5, 2, 4, 9, 1)$	
1	Profits $(p_1, p_2, p_3, p_4, p_5) = (10, 6, 28, 18, 4)$	
	Knapsack capacity $W = 15$.	
	24) State Travelling Salesperson Problem (TSP). Find the minimum cost tour	

15

SG - 641

25) Explain DFS algorithm and draw the DFS spanning tree for the following graph.15

-4-

SECTION - D

IV. Answer any one question, question carries ten marks :

(1×10=10)

26) Determine all pair's shortest paths in the following graph.

27) Let S = $\{5, 6, 7, 8, 10\}$ and M = 15 find all possible subsets of S which sum to M. Draw the solution space tree.