# VI Semester B.C.A. Examination, September/October 2021 (CBCS Scheme) (Fresh + Repeaters) (2016-17 and Onwards) COMPUTER SCIENCE BCA 601 : Theory of Computation 

## Time : 3 Hours

Max. Marks : 100
Instruction : Answer all Sections.
SECTION - A

Answer any ten questions. Each question carries two marks:

1. Define a symbol and an alphabet with example.
2. Write the five tuple of a Finite Automata.
3. Define E-closure.
4. Write the regular expression for the set of strings of 0's and 1's starting with 01.
5. Define regular expression.
6. Find the language accepted by the following grammar $G=(V, T, P, S)$ where $V=\{S\}, T=\{a\}, S=\{S\}$ and $P=\{S \rightarrow a S / \in\}$.
7. Define Parse Tree.
8. Define GNF.
9. What is Left Recursion?
10. Define Nullable variable.
11. List out any two closure properties of recursive language.
12. Define post correspondence problem.

## SECTION - B

Answer any five questions. Each question carries five marks:
13. Differentiate between DFA and NFA.
14. Design a DFA to accept strings which ends with 110 where $\Sigma=\{0,1\}$ and check whether the string 0110 is accepted by the DFA.
15. Show that $L=\left\{\omega \omega^{R} / \omega \in(a+b)^{*}\right\}$ is not regular.
16. Construct an $\in$-NFA for the following regular expression $(0+1)^{*} 1(0+1)$.
17. Check whether the following grammar is ambiguous.
$S \rightarrow i C t S / i C t S e S / a$
$\mathrm{C} \rightarrow \mathrm{b}$.
18. Convert the following grammar into CNF
$S \rightarrow a A D$
$A \rightarrow a B / b A B$
$B \rightarrow b$
$D \rightarrow d$.
19. Obtain a grammar for the following DFA.

20. Write a note on different types of turing machines.

## SECTION - C

Answer any three questions. Each question carries fifteen marks :
21. Convert the following NFA to its equivalent DFA.

| $S_{D}$ | 0 | 1 |
| ---: | :--- | :--- |
| $\rightarrow q_{0}$ | $\left\{q_{0}, q_{1}\right\}$ | $\left\{q_{0}\right\}$ |
| $q_{1}$ | $\left\{q_{2}\right\}$ | $\left\{q_{2}\right\}$ |
| $q_{2}$ | $\left\{q_{3}\right\}$ | $\phi$ |
| $* q_{3}$ | $\left\{q_{3}\right\}$ | $\left\{q_{3}\right\}$ |

22. Minimize the following DFA

|  | a | b |
| ---: | :---: | :---: |
| $\rightarrow \mathrm{A}$ | B | E |
| B | C | F |
| $* \mathrm{C}$ | D | H |
| D | E | H |
| E | F | I |
| * | G | B |
| G | H | B |
| H | I | C |
| $* \mathrm{I}$ | A | E |

23. Construct a PDA to accept the language $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$ and check whether the strings aaabbb and aaba are accepted by the PDA.
24. a) Eliminate useless symbols from the following grammar
$S \rightarrow a A / a / B b / c C$
$A \rightarrow a B$
$B \rightarrow a / A a$.
$C \rightarrow c$ C
$D \rightarrow d d$.
b) Eliminate unit productions from the following grammar.
$S \rightarrow A a / B / C a$
$B \rightarrow a B / b$
$C \rightarrow D$ b/D
$\mathrm{D} \rightarrow \mathrm{E} / \mathrm{d}$
$\mathrm{E} \rightarrow \mathrm{ab}$.
25. Design a Turing Machine to accept the language
$L=\left\{0^{n} 1^{n} / n \geq\right\}$.

## SECTION - D

Answer any one question :
26. State and prove pumping lemma for regular expressions.
27. Explain with examples different types of grammar.

